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TRANSFORMATIONS OF SYSTEMS OF RELATIVISTIC

PARTICLE MECHANICS"

by

Herman Rubin and Patrick Suppes

1 IntrodLC tio

In McKinsey, Sugar, and Suppes [73 the axiomatic foundations of classical

particle mechanics were investigated; and in McKinsey and Suppes [81 the tran..

formations which carry systems of classical particle mechanics into systems of

classical particle mechanics were determined. The purpose of the present paper

is a similar investigation of relativistic particle mechanics (in the sense

of the special theory of relativity). Some remarks on the general orientation

of these studies are to be found in Section 1 of McKinsey, Sugar, and Suppe3 r,,

and in McKinsey and Suppes [91,

In regard to our axiomatization of relativisitic particle mechanics, we

want to emphasize that we have in no sense attempted to use primitive nctions

which are logically or epistemologically simple. Investi'ations with these

latter aims are to be found in Reichenbach [111, Robb [12], Schnell f13 1, rnd

Walker [14]; but these studies are incomplete in the sense that they do rioT.

give axioms adequate for relativisitic particle mechanics as it is ordinarily

conceived by physicists. We have attempted to present uch a complete 3et of

axioms in a mathematically clear way.

The main result of the present paper is the determination under a certain

weak hypothesis of the set of transformations which always carry systemq of

relativistic particle mechanics into systems of relativistic particle mechantcs.

Although this set of transformations is not a group (under the usual oppration)

L "
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we are able to show that it is essentially a Brandt groupoid. It is difficalt

precisely to compare our results with those of MacColl [6], but our results

seem to represent an improvement in three respects: (i) we work within an

explicit axiomatic framework; (ii) we consider transformations of the units

of mass and force as well as position and time; (iii) we consider transfor-

mations from one value for the velocity of light to another.

We briefly summarize the mathematical notations we use, most of which

are standard. We denote the ordered n-tuple whose first member is a1, whose

second member is a2, and so on, by

By an nr-dimensional vector we mean an ordered n-tuple of real numbers

Operations on vectors are defined in the usual way. We use the symbol "C" to

denote the real number zezo, the n-dimensional vector all of whose components

are zero, and the matrix all of whose elements are zero. If A= <al, an)

is any vector, the length IAI of A is defined by

JAJ- a 2 + ...72
1 n

and by ( we mean the r-dimensional vector ai Ia 2 ,ar

Thu.- if A- <4,7,5>, then [A]2,3 . <7.5>. If A is a vector, we sometimes

write "A2" for "1A1 2 ". If O2 is a matrix, we denote the transpose of CL by

"O'", and the determinant of O, by "1I". We denote the identity matrix

by "S"o Although we treat vectors as one-rowed matrices, if A is a vector

we always mean by IAl, the length of A and not the determinant of A: the

meaning should be clear from the context. We use both matrix notation and

usual vector notation for the inner product of two vectors A and B. Thus,

.we sometimes write: AB , and sometimes: A.B, whichever is more convenient.
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We use Menger's notation for derivatives (see Menger [U01). If f is a

function, then D(f) is the derivative of f. Thus, for example, D(sin)- cos,

[D(sin)l(x)- cos x, and [D 2(sLn)](x)--sin x. In this connection, we use the

standard notation for sums, products, quotients, square roots, etc. of functions

Thus, for example, if f and g are functions of a real variable, by f~g we mean

the function h such that for every real number x

h(x) - f(x) + g(x)

If f is a 1-1 function, f _' is the inverse function of f. It is also conenient.

to introduce a special symbol for the c ompQstjio of two functions: if f and g

are functions of a real variable, by gof we mean the function h such tnat for

every real number x

h(x) = g(f(x))

To make some of our equations involving derivatives more perspicuous in reI.ticrn

to the notation ordinarily used in physics, we introduce formally the foliow'a1g

two symbols: if f and g are functions of a real variable, then the function

dL is defined by the following equation (for all real numbers x)ag

2
and the function d 2  by the equation

2 by th Pquto

dg2

Er WDg (x)
dg 2  (Dg)

Finally, we also use the following notation: I is the set of all prsltive
+

integers, R is the set of all real numbers, R is the set of all positive real

numbers, and Bn is the set of all n-dimensional vectors. We sometimes use

geometrical language, referring to vectors in X as points in n-dimensional
n

Euclidean space, etc.



4-

Our axioms for relativistic particle mechanics are based on six primitive

notions: P, T, m, s, f, and c. P is a set, 9- and m are unary functions, s is

a binary function, f is a ternary function, and c is a constant.

The intended physical interpretation of P is as the set of particles.

For every p in P, 9(p) is to be interpreted physically as a set of real

numbers measuring elapsed times (in terms of some unit of time and measured

from some origin of time). There is a good physical reason for assigning

(possibly) different sets of real numbers to different particles, instead of

having one set of elapsed times for the whole system, as in McKinsey, Sugar,

and Suppes [71: two particles which have a simultaneous "life-span" with

respect to one inertial frame of reference may have life-spans which do not

even overlap with respect to another inertial frame.

For every p in P, m(p) is to be interpreted physically as the numerical

value of the rest mass of p. For every p in P and t in J(p), s(p,t) is a

vector, to be thought of physically as giving the position of p at time t.

Thus the primitive s fixes the choice of a coordinate system. It is also

possible to take as a primitive the set of all admissible (ice., inertial)

coordinate systems; this procedure is followed in Hermes [31. We remark that

for a fixed p in P, it is usually convenient to use in place of s the function sa,

which is defined on 9(p) and is such that for every t in A(p), S p(t)-s(pt)o

For every p in P and t in !(p), and for i any positive integer, f(pt,i)

is a vector giving the components (parallel to the axes of the coordinate

system) of the i t h force acting on p at time t. For further discussion of

this primitive, applicable to relativistic as well as classical particle

mechanics, see McKinsey, Sugar, and Suppes [71.

Our primitive constant c is to be interpreted as the numerical value of

the velocity of light.
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3. AxiMs.

Using the six primitive notions Just described, we now give our axio

for relativistic particle mechanics.

An 2d& sextuple r - <P, !T,m,s,f,c> which satisf Axioms AI-A7

cglled _U n-DIMENSIONAL SYSTEM OF RELATIVISTIC PARTICLE MECHANICS (Dr sor

iMp ly a4 SYSTEM OF RELATIVISTIC PARTICLE MECHANICS, for abbrevLtion, S.R

Kiemtial 1_.311=m

Al. P is ! non-eupty, Initet.

A2. If pe P, ±he V(p) is an in-rterva of =u1 Uibu.

A3. if pEP an! tG9(p), Sp (t) is an n-dimensional vector; an.

moreover, the seqond derivatiy a of s pexs JkQughou tlhep

A4. IM csa I c is A positive real nber such that for eyey p

=d t ja 5p),(DS p) (t) <c

Dynnmical axiQ

A5. If p c-P, 1" m(p) Is a posite r-ia uwu.

A6. If pEP =d tE0(p), thn f(p,t,1), f(p,t,2),... ale n-dimengic

vectors such th te &ies

OD

f(p,t,i)
i-i

A7. pf PEP an te (p), :he

m(p)[D T) (t) -

c /

V



Since this set of axioms is similar in many ways to that given for classical

mechanics in McKinsey, Sugar, and Suppes [71, a large number or remarks to be

foudn in Section 3 of that paper are also applicable here and will nct be

repeated. From Axiom A7 it is clear that the force concept we are using is

that of Minkowski. In the solution of special problems this concept is not

always the most useful one, but the relative simplicity of its transformation

properties more than justifies its use here. Some readers may feel that there

are good physical grounds for taking the notion of relativistic mass as primitive

instead of that of rest mass; however, it is easy to define the notion of

relativistic mass in terms of the notion of rest mass and our other primitives,

and the use of the notion of rest mass as a primitive emphasizes the considerable

formal similarity between our axioms for relativistic mechanics and the axioms

for classical mechanics of McKinsey, Sugar, and Suppes.

For p in P, g(p) is a time interval for the particle p (with respect to

the frame of reference fixed by our choice of primitives). It may seem that it

would have been simpler to take gp) as the interval of proper time of the

particle p. However, this approach would complicate the treatment of sys

of particles. In the main, the notion of proper time is most convenient in

discussions restricted to the consideration of a single particle. From the

remark in the previous section it is clear that it is not reasonable to require

that the intervals 9(p) be overlapping. A second argument against such an

assumption is the prominence in modern physics of elementary particles with

very short life-spans. 2 / We note, however, that in studying certain special

problems, such as that of defining a reasonable notion of center of mass of a

SoR.P.M., it is desirable to restrict the discussion to systems in which

!t(p)- (-oD,+c) for every p in P.



If i) "e" is replaced by "1/k" in the inequality of Axion A4 and the

equation of Axiom A7, ii) k is treated as a primitive replacing c, and

iii) Axiom A4 is modified to reads "The constant k is a non-negative real

number such that,. o", then, by adding appropriate further axioms, we can get

either classical or relativistic particle mechanics. Thus an additional axiom

asserting that k-O gives us classical mechanics; and the assertion that k >O

gives us relativistic mechanics.

We close this section with a number of definitions which will be useful.

later.

For p in P and t in A(p), we set

vp(t) - (Ds p)(t)

vp(t) is, of course, the vOtjy of p at time t. With respect to a fixed

element t0 in (p), we define the function 't (for p in P and t in &Z(p))
0

as follows:

*-- " V2 dt

(tto C

t0

1Ct (p,t) is the proper time of p. Since we are only interested in the
0

derivative of this function with respect to t, and since the derivative is

independent of to, we shall usually prop the subscript.

For p in P and t in f p), we define the function q as follows:

q(p,t)" - s(p~t),t>

It is natural to call q the Apeft lMe function.

For p in P, t in 1(p) and i any positive integer, we define what we

call the relativistic frce function frel as follows:

fre f(p,t,i)"v 2p(t)
frel(pti) - Kf(p t,i), 2 >

c
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Although it is not usual to adopt a special name for this function, the function

itself is used frequently in textbook treatments of relativity.

By a c-prticle path (for any positive number c) we mean a set J of

points (ie., vectors) in En+ 1 for which there exists a S.R.P.M. <"C13,Z,m,s~f,c>

such that for every point X of En+l, X is in J if and only if there exists a

t in f l) such that X- <s(l,t),t>.-V It is obvious that if g is any twice-

differentiable function defined on an interval T of real numbers and taking

vectors in En as values, then the set of vectors <g(t),t> for t in T is a

c-particle path, provided that )(Dg)(t)l <c for all t in T.

By the slgp2 of a line X in En+l, whose projection on the (n+l)St-axis

is a non-degenerate segment, we mean the n-dimensional vector W such that for

any two distinct points <Zl,x and <Z 2 ,x 2 > of CK

z - Z 2 .

xI - x2

By the sped of Q0 we mean the non-negative number IWI. By a c-in l

p:_th we mean a line in En+1 whose speed is less than C. We note that every

segment of a c-inertial path is a c-particle path, but is not necessarily a

c-inertial path (since a c-inertial path must be a whole line). By a

c.-jie we mean a line in En+ 1 whose speed is equal to c. The notion of a

c-line corresponds to the intuitive notion of a light line.

If we want to refer to a S.RoP.M. r with numerical constant c, we

shall write: S.R.P.M. r'C
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We begin by defining the notion of a genqrq.zzed L_ rz _m rjij. An

intuitive discussion of such matrices follows Theorem 1.

Definiton 1. _t c, c' Id A be pQosjltjve real umfb_ r. Then A wtrJix 0.

of order n1 is said tQ be a GENERALIZED L.ORENTZ MATRIX WITH RSFECT TO

<cc, I> fly if tQere exist uurer S r ns a , d an n-djAmesaq fngl

vector U and aIn _rthogQall mtrxx- of og-dQ e n such that

2

2

And*

The following two lemmas simplify the statement and proof of Theorem 1.

reAJ n bers, and It 0, ]a . generlizA Lor& m with respe o

6 V,=, A> . Let the t=-qion h D&be- ad by thea eq t (for fyery t

in (1))
h(t) = [<s I (t),t>)Lln+ 1

Then the f uctoij Dh exists; aus are e ithe aws_ poi ve or Alys

negatve; and the fu o h is 1-1.

Proof. From Definition 1 and the hypothesis of the lemma we see that

there are numbers 8 and an n-dimensional vector U and an orthogonal

matrix such that

2

2 =(i

and iWL1 E.Q) - 3f *

U2  co'2

(x:~u
(
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Thus, s *

h(t) -((t-)

c 2 c cc

Hence

c'Dh(t -iv (t) Si U* IV (t911 lU1c,(Dh)(t). 1- > 1- --
c occ cc'

Using Axiom A4 and the fact that is orthogonal, we have

c/(Dh) (t) _Ul

Since IUI <c', the function Dh is bounded away from zero, and it thus follows

from Rolle's theorem that h is 1-1.

The following lemma is a theorem of matrix theory.

Lmma 2. kg& c, c and A be po si ntive _. Thein a C-

Sordr n~l is a generalize _orentz MatjX with rep ct a,cnd n

onlyI

(1) 0-0 ,2> 02 2

Proof. The proof of necessity is obtained by direct application of

Definition 1.

For the proof of sufficiency. .et

where (N is a matrix of order n, K and L are n-dimensional vectors and m is a

real number. From (i) we obtain at once:
(1) N 9* c/2 KK A24

(2) W L c 2 .mK* o

(3) LL*- 02m -X2c2  .

From (3) it follows that

(4) m 0



We define:

(5) @ UMk1L

(6) - -m-

(7) U L

(8) U2*

Since the right member of equation (i) of Definition 1 can be written

X(+ 84ktl*hi) U*

-c Cc IU J

in order to complete the proof it suffices to show that

*U 
2

t#2  K

(i)- L
CA

(Iv) m

(v) g2

(VI) 
2 (i U 2  - 1

C/2

(VII) W = 4

Equation (III) follows immediately from (5), (6), and (7), equation (IV) from

(5) and (6), equation (V) from (6), and equation (VI) from (3), (5), and (7).

From (2) and (7) we get

(9) NUJ U -c/2 K

and then from (8) and (9) we have

-h
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•(o * _ ( ,-.]-)c, 2 K u* U .,. ,-),2 U*K)
'(10) + IL (

X2  [U2 (-U12

-)* 6-)c 2 _,2 K* )K K(-C/2 K)

Pl 2* ,4 *.
. _i_ A * ( 2"l)c2K *3

22

From (VI), (1) and (10) we conclude that

which establishes equation (VII). Multiplying both sides of (8) on the right

by- , , and using (9), we get equation (II). Equation (I) follows from

(8) and (II), which completes the proof of the lemma.

The following theorem is a generalization of the well-known result that

the relativistic equation of motion is covariant under a Lorentz transformation.

Theore 1. Let KP,_5m,s,f,c> hj = n-jeqn~adl S.R.P.MO Let ,
=d b e positive rea e et B be n -dimensnna- o etoQr and .

ha a generalized Lorentaz matr j respect c,c',X>. For each p in P

let the funct h e h2 dad a, 1Q.J.Jw, (for a"i t in T(p)):

hp (t)t),t>O+B n+1

(Ay Lemma 1 ILI inverse t= h 1 e o) Let t fnction 5 e h, fe&d
p

as follows: for p in P, .5P(p) is the range 2f the function h p; and let the

£unctions m-, s- and fV be defined by the following Equations (fqr p in P,

tI in f"(p) and i in I) -

mI(P)- sm(p)

s'(p,t*) - Isphlt),~~'>0+]s .
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f 1 Pt 42 1<f(p (p')i ,h~ (t D)i) RD h l

W22 > .1l..,n

The r- <, ,/.. 1f c' J un-dimensinalS.R.P.M.

Proof. It will suffice to show that r' satisfies Axioms A4 and A7.

since the proof for the other axioms i trivial. Let

F 9*)
It is easy to show that for F in P and t' in

(i) v (t ) "( (h p(t " > (

with the denominator of the right member of (I) always unequal to zero.

(Since in this proof we always consider a fixed particle p, we drop the subscript

"p" from this point on.)

We have from Axiom A4

(2) X2 (Iv(h- 1 (t/)) 2 - 2 )< 0,

b 2 (Iv(h-l(t,))1 2 - C2) A2<v(hl(t)),>( 0 ) (hl(t)),l>*

Then by Lemma 2 we have

2 (v( (t)) 2  2) <v(hl(t))(3) X v (/ >a( <--( )

The right member of (3) is equal to

(4) vh-t))l F ( kgF*)<v(hw t) ), il

-C v(h-l(t)),> (E)<Eg><v(h-l(t')),l >

and using (1) we see that (4) is equal to

(5) (<V(h -'(t )),1 >  *)v,(t,))2" 0,2 (<v(h-(t'),l> )2

9 9
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From (2), (3), (4), and (5) we conclude that

v ,t.)l I _/2 < 0

which verifies Axiom A4 for r'

It is not difficult to show that from Axiom A7 we have
CD

(6)v(t)2 - [ D (t) - frel(p't'i)

0

Setting q'(t')- <s1(t"),t> for all t' in 5 (p), we conclude from the

hypothesis of our theorem that

ql(h(t)) - q(t)O,+B ,

and thus

(7) ((Dq')o h)(t)(Dh)(t) = (Dq)(t)CL

Directly from the definition of q and q/ we obtain

(8) (Dq)(t)( 2) ((Dq)(t))* _ v(t)12 a2
-c2

and

(9) ((Dq/)o h)(t) 0l2) (((Dq')o h)(t))* - 1(vo h)(t)12_ c,2

Using Lemma 1, Lemma 2, and (7) we obtain from (8) and (9)
kv'oh)(t)12 _ c,2 2 (v(t)1 2  2)

((Dh)(t))
and thus

(10) - 22a2 )12C,2 " ,2((Dh) (t))2 (1- v

By Lemma 1, (Dh)(t) is either always positive or always negative; the remainder

of our proof is analogous in the two cases, so that we shall only consider the

case where it is always positive. We then have from (7) and (10)

[(Dq')O h1(t) a' (Dg) (t) CLI  l~v ° h )(t ) 2" c"X I  v t 2 2

1 4J~2
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and hence

(ii)D MF Do'Dg (t)t~n--~~"2 h

S c' 2 c 2

Differentiating both sides of (11), and using (6), we obtain

(12) (Dh)(t) D l 0 h (t )

" ~cD I o D q~v 2 _ ( t )

1- v(t)I2  c t

C i-I

From (10), (12), and the hypothesis of our theorem we infer that

(13) Dm(p) D' 2) 0 (

-
2

-1- I~'h( - f rel/ (p,h(t),i) ,
c 2  i= 1

and from (13) we conclude immediately that Axiom A7 holds for F' i

Remar 1. All the transformations mentioned in Definition 1 and Theorem I

have a clear intuitive interpretation if we consider <P, T-,s,f,c> as a physical

system whose mechanical properties are observed and measured with respect to

some (inertial) frame of reference and some set of units of measurement, and

/,, , a/>as the same physical system observed and measured with

respect to some other (inertial) frame of reference and some other set of unite

of measurement. Thus, c is the old and c" the new velocity of light. The

introduction of the number ' amounts to changing the unit of mass by an amount
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and the vector B corresponds to shifting the origin of the spatial frame

of reference by -[Bjl ,n and the origin of time by an amount -[B l

The number A represents a uniform stretch of spaze and time. When 6 -- l, we

have a reversal of the direction of time, The matrix represents (for n 3)

a rotation of the spatial coordinates - or a rotation followed by a refle,tlon

The wector U represents the relative velocity of the two inertial frames of

reference, and the number which is determined by U and c/, is the well.-

kn-own Lorentz contraction factor. Finally, it is easy to check that the last

matrix in the factorization of the matrix 0, yields the ordinary Lorentz

transformations. We note that the rather complicated transformation of the

forces is the velocity-dependent transformation to be expected in relativistic.

mechanics.

Remar 2. Theorem 2, our main theorem, is a sort of converse of Theorem lI

roughly speaking, we show that the transformations described in Theorem 1 are

,he only transformations which always take systems of relativistic particle

mechanics into systems of relativistic particle mechanics. To facilitate the

formulation and proof of Theorem 2, an additional lemma and some definitions

will be useful.

Lem 3. Le X, <z 1 ,x"l X2 '(Z 2 " 2 >" X3 ' <Z 3,x he

points in En h W ) X, < x <x 3, (ii) there is U c-jIAeit pajh

throg X1 ad X, and (iii) there g c-inertia! pith th gh X2 and X

Then there is I c-particle pgth ~hrqgh 1 X 2 , Ud X3 '

ProS. In view of the remark near the end of Section 3, it will suffice

to construct a function g which: (a) is defined on the closed interval

[xlX3 (b) takes vectors i En as values; (c) is twice differentiable;

(d) is such that for every t in [x,1 3 (Dg)(t) c; and e) is such

that
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g(x) - z I

g(x2 ) - Z2
and

g(x 3 ) - z3
Let

a -- -X1

b = 3 x32

V Z2-Z i
V ,,

a

b
, 2c log 2 ,

(c- max( IV I,W)min(a,b)

A - aV-° cosh V b+ bW log cosh W a
a log cosh Vb+b log cosh -a

B ab__ f(W - V)
a log cosh yb+b log cosh 6a

The reader may verify that the function g defined by the following equation

(for t in [xl,x 31) has properties (a)-(e):

g(t) - Z2 + (t-x 2 )A+B [log cosh 'A(t-x 2) .
+ +

Def 2. Let ht e UnnM MApping R JnJjQ R ; t be

fp o hiEs a 1-1 MapEg of E n 1 ' itself; and let CP3 b fl funqt p n
Z pping E 2n into Eno .Then we call the ordered t~iple <TI' C2)C ' AU

ELIGIBLE TRANSFORMATION.

_ ltio ..3. Let - <Cp2, <2' T3 > be an alJgib12 transformation,

"er- KP1 5Fm'S,f,c> II ILS.RP.M , And! uagp l P~~

HP

H (t) " q2(a(p't),t)]n+I

he__ Thn by. the .-TRANSFORM 2, r" (-w-c me 4" xr_ 4mv ( n) ,,eanth
ordre u p, '2 n 1 hr nP
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is &12 rngi qp thq fjunc H; an g~ f' are 11ned hy the

fo.Ulaig vqatiqu th t/ in..%() j- &Ia- px-ijng& H. '(t') af t/ u11de=
p

H is =IU2 and 2je-kq :thV A eX
p

fs'(P'e') -(P (, ~'')vpI ~")

We are now in a position to state and prove the main theorem of this paper.

Thoe25 2 u Tl K P2 C % f 3 > 12 a ftJjgihJ trangforration, .4n

j~ c g~,c' be psitive 1 a~mhqrs j~q jh~ (i) for 2vy~ -e~~

sysemgjrelv~ist pa ir---l mechanics Fc, 0 ( rI)-s a u~ea

C-pLU-1 Rath lh there -qxi pp jtjiya re numiberq gnd A, an

(n+l)-dimn§jgn a vcto B, Il~ I g~rjje Lalt m at jj respect

I2cc,>a~1] that ftpa any vectors Z, Md JA En !it1 qZ-~c Z

x in R Wd y in R,

CP2(Zlx) = Z K iX>C+B

c3(Z) - "I' J2 al

Era We first want to show that if Z is any vector in E nsuch that

IZI<c, then

3 (ofz) - 0

S etting Pu {- } 1 ()-( D D m(l) -1, and for t in 51(1)

s(1,t) - Zt

t(iot,i) - 0 for i >.1

we see that <P,.%'M,s,f,c > is a S.R.PM. Since for every t in l)

Z av(l,t), we conclude from the hypothesis of our theorem, Definition 2, and
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Axiom A6 that the series

T 3(o z) + CP3 (o z) +
is absolutely convergent. Hence,

(I) T3(oZ) 0

For every segment of a c-inertial path there exists a one-particle

S.R.PoM. ({l},Tmsf,c> such that for every t in (I)

f(pt,i) - 0 for i>l,

and for every vector X in Rn+l, X is in 2 if and only if there is a t in 5-(i)

such that
X - <(l't),t

Hence, it follows immediately from (1) and the hypothesis of our theorem that

(2) C2 carries segments of c-inertial paths into segments of c"-inertial

paths,

Let P- , am,s,fc> be any S.R.P.M. with constant c. By hypothesis

< ( Fa),c > is a S.R.P.M. For any p in P, if t 1 and t 2 are in OP) and

t I t2 , then
9 2(s(p'tl1),t I1 ) # V(P~pt2),t2) I

since T2 is 1-1. Suppose now that

[q 2 (s(P,t I ) ,tI)nl - C9 2 (s(plt2),t2)ln+l

Then we must have

I T2(s(P,tl ),tl)11,..., . # (CP2 (s(p,t2),t2 )ti,..., n

but then <('c ),c'>is not a S.R.P.M., for p is required to be in two places

at the same time, which violates Axiom A3. We thus conclude:

(3) C2 is 1-1 in the last coordinate along the space-time path of any

particle of a S.R.P.m. r, and thus the pre-image under of any

point t in _f/(p) is unique.

Furthermore, since by hypothesis C2 takes the interval JC(p) into an

interval V(p), we have:
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(4) T2 is continuous in the last coordinate along the space-time path

of any particle of a SoR.PoMo

From (4) and the fact that any two points <Z,x> and <Z,y> lie on a

c-inertial pith, we obtain:

(5) For any point <'x> and every E6 0, there exists a S> 0 such

that for any point KZ,y> if Ix-YI< F, then Ix'-y'l< E , where

x /- [ 2(Z,x)n ,, and y'"[c( 2 (Z,y)Jn~lO

We next show that

(I) C?2 is continuous.
Let <Z1 ,x) be any point of En+l, and let E be any positive number. Let

E Using (5), let e be a positive number such that if 1xl-yieS

then I l-y , E where Xl-=[ CP2(Zlxl)3n+l and y' -[ 2 (Zly)]n+l; and

let (5 3c+2 We shall show that if <ZV2 is any point of En 1 such that

(6) I<Z1,X,>-(Z 2,x2> < S ,

then I(?2 (Z,xl)-2(2 ,x9E2)1< . Suppose for definiteness that

(7) xl>" x2

We may choose x and x3 so that

1z2 -Z1 1 1z 2 -Z1(8) x2  c x<x 2  c

and
nd (9) Iz2-Zll 1 x z2- z i o 1

(l) cz-1  < x 3 <x 1 + _ +8

From (7), (8), and (9), we obtain

(10) 1-I< x2- 1  
Iz2-z 1 + 2

and from (6) and (10) we then infer that

(11) 1x- xl < (3- 2
C

Since from (7), (8), and (9) we have

(12) Xo< x2 <xl< x3

t-
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we obtain from (11)

x3-x1 I < *

lxi- X.< S
Consequently, by (5)

I-x I+x X1<2 E

and thus by the triangle inequality

(13) x-XoI< 2 ,
where

x- E(2(Zlxo)ln l .
X3 tT2(Z1 3 n~l

From the second part of (8) it follows that there is a c-inertial path through

<(Z,Xo> and <z 2 ,x 2 >; and from (7) and the first part of (9) it follows that

there is a c-inertial path through<Z2 ,x 2> andZi ,x3 >. We thus conclude

from Lemma 3 that there exists a c-particle path through <Zl x , <Z 2,x2)

and <Z1,x 3 >. As before, for abbreviation, we set

- kC2 (Z2 ,x2 )]n+1

z2 W [q 2 (2'x2 ) 19, . . ,n

Z/- 2 (Z ),x)i,.n for i-0,1,3.

Since C2 is 1-1 and continuous in the last coordinate along any c-particle

path, it is monotone in the last coordinate along any c-particle path, and

we thus have: either

x° < x1< x ,
Xo 10 3

(14) or

7 < X < X"
of3 1 0
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Also, since segments of c-inertial paths are carried by C2 into segments of

c'-inertial paths, we have:

(15) 1 z'/ -z / 1- z/-z .1l He z -z "I < C *'I-X-c' ' ' - ,
and

(16) IZ -z ' z / 0 i + Z O-Z' 1< c'Ix"-X/I+ C lX'-X I

We obtain from (14), (15), and (16):
z Z' I< c-[ X'x + x X- I "-x x

(17) 21 11-Z 2 [ 3-J{+1x 1i+o {.x3 x2 2oli

Thus from (13) and (17) we conclude that

z1-Z 2j< 2c- C-*

and from (13) and (14) that

and since -2(+c) , we infer that

I( 2 (Zl,4) - ce 2(Z2,x 2 ) < 6

which establishes (I).

We next establish:

(II) 2 carries parallel segments of c-inertial paths into parallel

segments of c -inertial paths.

It is clearly sufficient to show that T2 carries parallel c-inertial paths

into parallel segments of c'-inertial paths. Let ?, and 72 be two parallel

c-inertial paths, and let %3 be a c-inertial path which intersects qI and 72

in the points A1 and A2 respectively (obviously such a c-inertial path V 3

exists). (See Figure 1.) As previously, we use a prime to designate the

image under C2 of a point, line, etc. We may construct a fourth c-inertial

path which intersects 73 between A1 and A2 and which intersects 71 and 92 at

points distinct from A1 and A2 . Consequently, we infer from (2) that the
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segmente I and 2 lie in the same plane in the image space of TV

Figure 2.) Suppose now that and are not parallel. We extend (if

necessary) i and 12 to their point of intersection, say, J'. We next

select B' on / between J1 and A (we use "between" in such a way that B/
e1 1

must be distinct from J1 and A'); similarly, we select D/ on between J'

and A'. We now consider the pre-images, B and D, of B' and D'. Since c 2

-s 1-.i and continuous, it is clear that B and D must be on the same side of

q3 oi.e., the segment BD does not intersect 73" Let E be a point on 3

between A, and A2. Then, since 3 is a c-inertial path, one of the

numbers [A2]nl-[Eln+l and A ln+l [E]n+1 is positive, and the other is

negative. Since 1 and ?2 are parallel, [B]n+l-[Aln+I and [Dn+l -[A2 1n+ I

have the same sign. We then construct a line through D' parallel to / or

through B' parallel to r2 according to whether [A2 ]nl[E]n I or

[A1 n+1-[E]n+1 agrees in sign with [Bln+l-[A In+l Suppose, for definiteness,

(see Figure 1) that [A2 n+-[E] n+ agrees in sign and that this sign is positive,

Let F1 be the point of intersection of 7' with the line through B' parallel
to o By construction F- is between A' and A', and thus F is between A

to ~l1 2'

and A2 '

We then have:

S..A2, ,n[1 ll,..,n)

c c([D1+1-[A 2 ]n+1 ) + c ([A2 ]n+l-[IFIn+! )

c([Dnl - IFjn 1

Hence, the line through D and F is a c-inertial path. This line intersects

11 at a point, say, G, and, furthermore, by construction DFG is 
a segment of

a c-inertial path, and hence the image D'F'G' is a segment of a c-inertial

path. But D/F/ is parallel to r1, and the image of G does not lie on the

: .....
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extension of D'Fl, which is a contradiction. Thus ?1 and 72 are parallel, and

the proof of (II) is complete.

We next show that

(II) T2 carries the midpoint of any finite segment o( of a c-inertial

path into the midpoint of A.

We consider a fixed plane containing c( and a line parallel to the t-axis

(the (n&l)' t coordinate axis). In this plane we construct, with 0% as a

diagonal, a parallelogram whose sides and other diagonal are segments of

c-inertial paths. Let the speed of the c-inertial path containing o4 be k.

It is clear that through any point of our fixed plane there are exactly two

lines with speed ., for every positive number 1. Obviously, we may construct

,a parallelogram P with CK as one diagonal, with the other diagonal a segment

of a c-inertial path with speed 1(3k+c), and with one side a segment of a

c-inertial path with speed 1 (k+c). The other side of the parallelogram O2

is then a segment of a o-inertial path with speed J(5k+c). We conclude

from (II) that I is carried by (f 2 into a parallelogram ?, and the diagonals

of P are carried into the diagonals of 1'. Hence the midpoint of C is

carried into the midpoint of O(" and (III) is established.

We next show that

(IV) carries arbitrary lines into lines.

Leto o be an arbitrary line in n 1 and let l,) and < 2 ,x2> be any two

points on oP. We now construct an $inertial* parallelogram through these

two points. For definiteness, we assume:

We set

adw 2
and we chose xo and x so that:
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IZ-1-Z21x < X-
o 2c

KZ ~l - Z 0 -1 I3 <Zfxo>-<Z2 x2>1

I<Zl,l> - <Zo,xo> - l<Zo,x3>- <Z2 ,x2)

Let (see Figure 3)

A - <ZoXz>

B - Z2x>

C - B 0__. >
D - < x3

E A+ B

2

H 2 Figure 3

BK BC

2

Since the sides of the parallelogram ACBD are by construction segments of

c-inertial paths, we conclude from (II) that AkC'B"D is a parallelogram,

where A- (p2 (A), etc., and that the sides of A"C'B'D' are segments of

c/-inertial paths. Moreover, it is clear that by construction CED, FEG and

HEK are segments of c-inertial paths, and consequently C'E'D', F'EG', and

H E"' are segments of c'-inertial paths. Hence by (III), F", G', H', and

K / are the midpoints of the respective sides of A'C'B'D'. Thus, E' , the point

of intersection of the segments F'G' and H'K', is the point of intersection of

the diagonals of A'C'B'D'. Consequently, E' is the midpoint of the segment

A'B'. Since midpoints of finite segments are carried into midpoints of

finite segments and since is continuous, the proof of (IV) is complete.?
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From (IV) and the fact that C2 is 1-1 and continuous, we immediately

infer that '2 is a projective transformation, and since it takes no finite

point into a point at infinity, we conclude that

(18) f2 is a non-singular affine transformation, that is, for every

point <Z,x> i Enl

where a. is a non-singular matrix of order n+l and B is an (n+l)-dimensional

vector.

Now let

(20) ) and B. <B,b >

where b is a matrix of order n, Bi, E and F are n-dimensional vectors,

and b and g are real numbers. Then

(21) C(Z,x) -<Z +xF +B IZE +gx +b

Let 9 be a c-line such that for any two distinct points (Zlxl> and(Z 2,x2>

of CK
ZI-Z2 W

xl-X2

Obviously, I W - cO. ( is carried by 12 into a lne 0'. We want to show

that 0( is carried into a cl*-line. From (21) it follows that the slope W

of W'" is given by

(22) W.
° *W E g

By the hypothesis of our theorem

(23) W >'lc"

Consider now a sequence of c-inertial lines 0l'0<2,..o, whose slopes

1 172 ,.. are such that

i-
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From (21) and the hypothesis of our theorem we have

WiE +g

Hence, if WE +g#O, then

(24) W, wt8F im .< a
m WE +g i-D Y +g

Suppose now that WE +g- 0. Then

l*m (Wi E+g) - 0

9 and therefor,

li (W90F) -0

Hence,

WI Fj- 0

but then

<W,i>Q- o
which is impossifile, since C is non-singular. Thus we have

(251 Iw' - a',

For subsequent use we observe that for any S.R.P.M., <P, T ,m,s,f,c>

and any p in P and t in -(p)

(26) v(p,t)z*+g 0

For v(p,t)O0, the argument is the same as above; in case v(p,t) - 0 for some

t, on the supposition that v(p,t)*+g -0, we must have g-0 and F-O, which

again contradicts the non-singularity of (X.
From (22) and (25) we get

,&W+ 2W, F*F+lF 2  ,2

(w+ g)
and hence

, (27) w() +9*-c2E*E)w*+ 2W(F i2E*g) + IFl2 . c 2g2 .0

Since (27) holds for an arbitrary c-line, we may replace * by -W, and thus

conclude that
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W( 'FC2E*g) -o ;

and therefore, since the direction of W is arbitrary,

(28) D *. c'2Eg

In view of the fact that (26) holds for v(p,t)-0, we have

g 0

and we may then obtain from (28)

(29) E* -
c,2g

Using (20) and (29) we obtain

C12 2

-and since C. is non-singular, we have

(30) IFI2_ c/2g2  0

and from (27), (28), and (30) it follows that

Thus, from (27),.we have

w( *- c'2E*E)W * - 2(c 2-2

Using again the fact that the direction of W is arbitrary, we infer that

(31) 0 ,2 EE* E -c,, 2a J 2. - .
22 '-

where IA- 2 o From (28) and (31) we obtain

c

(32) L ,) " -/
-'12) * 2g*g ,*_c,2g2

:ja g- ;
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We next want to show that is positive. Let <Z1 xl> and <Z2 ,X2> be

two points in E such that

1Xfx-21<lxl-x l
and let

V - ZlXil- <Z 2 ,x 2 >
and

*v -vO
From (32) we obtain

Hence,

V V.Q 0

By the hypothesis on V,

V o)

and from the fact that c-inertial paths are carried into c/-inertial paths,

we have

V ~ ,/2)(V )<

Thus, tA is positive since it is the ratio of two negative numbers. We set

(33 A 47 .
We then conclude from (32), (33), Definition 1, and Le;ma 2 that

(34) OL.is a generalized Lorentz matrix with respect to <c,c',A >.

We now turn to the function which transforms the forces. In deducing

the form of 93 it will be convenient to make use of the functions C, q and

frel defined in Section 3 (in the course of the present proof we obtain their

transformation properties). It is also useful to introduce the function H

defined by the following equation for every p in P and t in
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H(p,t) - [f2(s(pt),t) n+l

We thus have that for t' the element in -t/(p) corresponding to t in (p)

Hp(t) -t'

We obtain from (21)

(35) D(Hp )(t) - Vp(t)E*+g

For any S.RoP.M. r- <P, 4m,Oqf,c> the following equation is a direct

consequence of Axiom 7 and the appropriate definitions (for any p in P and

t in (p))

(36) m(p) d1P (t) f (p'ti)
dC i-

p

and also, under the hypothesis of our theorem,

(37) 1i(m(p)) P (Hpt)) - frel'(p,H (t),i)d V? 2  i = I
P

We now obtain the relationship between _ (H t)) and - (t)
d t, 2  pdT2

Using (35), we obtain P p

d(ICt CH D(' O(t)(38) d 9 R(t \ DLL p /
[ (D Ct)(H (t)][(DH )(t)]

IIv/( (t))12  p
p p' (v WtE +g)

IV (t))/2
, 1- 2

It is easy to show that

(39) v p(H (t)) --TP
vp(t)E +g

and hence, using (39) and squaring (38), we get

i. --
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1 f D(t OH) 2 c/2v l(t)E*+g)2 - (v o(t)4 +F)2

()2 • 2_ Ivp2t)12

Using (27) to give us the expansion of the right member of (40) and then

using (32) to simplify the result, we obtain

(41) t)J 2 2 -~~D t)A2 V V t)j + A22](4) D f t) " 0 /2  a 2... I, (t)12

2

and hence,

(42) D('Cp OH )(t) - (D - (D t)
p p c

where 62. 1. We have from (21) and Definition 3

q/(H (t)) - qp(t)OL+B

p p

and thus

(43) [D(qpOH )(t)]-- (Dqp)(t)O.
PP P

SinceD( I H ) ] ( ) ( e ( ( ) ( HP) t

p pp p p

Dq,'
- L )(H(t))(D C/ P

p/
it is easily shown that

[D(q'oH)
d2 . Di 2i I

(, / e o H)
(44) -le2 (Hp(t)) -" P (t)

dt D(To eH
p p p

From (42), (43), and (44) we infer that

dq'(D )

2 D P A (D C)(45) d-n2 (Hp(t)) - . ....(De ' (t)

P C P

a j d 2 q ( t ) O
2

dTp



- 33 -

Now let X and Y be any two vectors in En with X O and Y 'c. Then

we set:

m(l) - 1
y2 2'Z-(l-2)(X-2 (x.Y-2))

c c

- CIY , -ftI)

anf for all t in f(l),

sl(t) - tY+2 t2Z

- + v(t)(Z'vl(t))

- 2  c2 ( v1 t )2

f(l,tl) 0 for i - .1

It is easy to verify that FXy' <P, T,m,s,f,c> is a SoRoP.Mo, and consequently,

so is < (T' /),C">. Thus there is a positive number such that

'?(' (i)) -
We note next that at t-O:

S (0) - 0

(Ds 1)(o) -Y

(D2s )(0) z z

and

f(l,O,l) z l

We thus have from (37) for t-0

2

and thus from (45)

" 2 d q,

':3 (X~I 2 2 L (0)oi .

Ad
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and hence from (36)

In view of (I), (46) also holds for X- 0.

Now let x be any positive real number. Then we set.

'S . - J

m(l) - x

for t in f(l)

s (t) - t 2 S

Iv (t 1 V " (t)2 )

f(1,t,l) t + 1 - 1(v(t)

C2 0l- 2

f(l,t,i) 0 0 for i>l .

We easily verify that fx = <P, £,m,sf,c>is a SoRoPoM, such that for all

t in fiZ(l), t frel(l,t,i). O. Furthermore, we infer from (36), (37), ardi-I

(45) that for every t in f(l)

Sfrel/(lH C(x) e2 CDrel

(47)- f (1t)
ii 2 A2  -1

and hence from (46)

(48) 9l(x) x

Our theorem now follows from (19), (33), (34), (46), and (48).

R 3. We want to emphasize the physically reasonable nature of the

hypothesis of the theorem just proved. We have assumed that systems of

relativistic mechanics are carried by our transformations into systems of

relativistic mechanics and that light lines are not carried into particle

paths. No assumptions concerning the continuity of either I C2' or

91 ?,orT
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have been made. Our assumption that C2 is I-1i may be justified phyeically

by the argument that any two space-time ppsitions of a particle distin-t with

respect to one observer mast be distinct with respect to every observer.

The standard presentations of the special theory of relativity vary a

good deal in their "derivations" of the Lorentz transformations. Almost

without exception, however, the assumptions underlying these derivations

are not clearly and completely stated. For the physicist who wants to begin

with a set of axioms for relativistic particle mechanics with respect to a fixed

coordinate system, our Theorem 2 provides a rigorous approach to the derivation

of the Lorentz transformations. The transformations we obtain in Theorem 2

are, of course, more general than the Lorentz transformations, but it is

obvious how the hypothesis of Theorem 2 may be strengthened so as to obtain

just the ordinary Lorentz transformations.

Theorem 2 is also pertinent to discussions of the relativity-of size,

(see, for example, Hoffman 41), since the determination of T'1 I2' and q3

tells us exactly how the system of units of measurement may be changed in

passing from one inertial frame of reference to another.

It is interesting to note that the set of transformations admissible

(i.e., satisfying the hypothesis of Theorem 2) in relativistic particle

mechanics differs sharply from the set of those admissible (see the hypothesis

of Theorem 3 of McKinsey-Suppes [8]) in classical particle mechanics: In the

latter case, but not in the former, admissible transformations can change the

unit of distance differently along different coordinates (with correspondingly

different changes in the unit of force). Thus, although classical mechnios

can in a certain sense be regarded as a limiting case of relativistic mechanics,

the set of transformations admissible in classical mechanics is in no sense a

limit of the set of transformations admissible in relativistic mechanics.
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5. Algebraic Structure of the Set of Admissible Transformations.

Let § be an elibible transformation which satisfies the hypothesis of

Theorem 2 with respect to the positive real numbers c and c". We then call

the ordered tripleO ,c,c> an admissible trpl&; and, corresponding to the

informal usage at the end of the previous section, we call an eligible

transformation an admissibe transformation if it is the first element of some

admissible triple. Since the set of admissible transformations is not a group

under the obvious operation of composition, it is natural to ask what is its

algebraic structure. We shall show that the structure of the set of admissible

triples is that of a Brandt groupoid (formally defined below). Roughly

speaking, the main difference between Brandt groupoids and groups is that a

Brandt groupoid is not assumed to be closed under the binary operation

corresponding to the group operation. Consequently, a Brandt groupoid may

contain many identity elements, that is, many elements e such that

x *ex-e x whenever x, x e, and e*x are in the groupoid. If there is

an e in the groupoid such that for all x in the groupoid e*x-x- e-*x, then

the groupoid is also a group. For this reason, we introduced the notion of

an admissible triple: the admissible transformation which carries every

S.R.P.M. into itself is an identity element whose composition with every

admissible transformation is defined; consequently, the set of admissible

transformations is neither a group nor a Brandt groupoid.

The notion of a Brandt groupoid was first defined in Brandt [11; we use

the formal definition given in Jdnsson-Tarski [51.

Def inition. 4. An algjgrac Oyte - (. *,j,,> (where * is an

operation U, a ubset oL uxj o u J is a subset 21 U MA JA an 2P im

2n U U TU) J& called BRANDT OROUPOID JS an nd ly JX jh2 :2112nnag conditiona

An1 satisfieds
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(i) E= x,y,z JA G, It xyGG and y*zeG, then (x-*y)-*zG And

(x. y) 4 z - x*(y*z).

(ii) For x,y,z in G, if x~yCG and x*y-x-z, Lhe y-z.

(iii) FU x,y,z ;L G, If x.-zyG _ x*zay+z, then x.y.

(iv) x+x- x j P~e x In J.

(v) x -#x C-J U x 4xle1C-J for qy x in G.
(vi) For x,z in J, there exists A y j G such tha x4yeG and y-zFG.

Rather than deal directly with admissible triples, it is somewhat simpler

to use the following representation. From Theorem 2 we conclude that to each

* admissible triple there corresponds a unique ordered sextuple <O.B, A , ,c,c

- where B is an (n+l)-dimensional vector, f', A , c, and c are positive real

numbers, and 0k is a generalized Lorentz matrix (of order n+l) with respect to

<o c,cX >. Such an ordered sextuple <U, B, c c') we shall call a

c i. From Theorem 1, together with Theorem 2, it then follows that there

is a 1-1 correspondence between the set of carriers and the set of admissible

triples.

We say that the carrier < 'B', ', ' ,9,c 2 > is =eft-ai to

the carrier .,B, , 3,c3 ,c4> if and only if cl c 4 . By the conformable

subset 1 of KXK we mean the set of ordered pairs of elements of K such that

the first element is left-conformable to the second.

We now define what we call the carrier s .

D i 5. By THE GARRIER SYSTEM Ie mm the ordered qUdnpj

(ii) * & _n 2peutj 0 5 K such .hme L. 21 ci er/ ( B/ C oa onfomal I juah carrier
'i1 2([ ,3' 4>
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.<o . ja.,B '+ B", p , p t' ,c3 ,c2 >

(iii) J is the set pf carir 2f ,Olhqcc> fiU 111
is the identi it 2f order n+l; d

(iv) -1 1he Qperaton 2n K o K s uch hat if <0.,B, , ,c,c EK

then

<6,c, ',c,c'>1 - <t ,-B Al/ ,l/?,',o >

We have then the following theorem, the proof of which we omit.

Theorem 3. The carrie ystem is q Brandt a_9_po_.|

We remark first that the operation I of the carrier system corresponds

to the composition of admissible triples, i.e., if 4,c,c'> corresponds to

< ,B, , ,c,c'> arnd <i,c',c"> corresponds to <0 ,' ) ">

then <C&.',BOL' +B', g', X X%,c,c"> corresponds to c,c ">, where

<Gc,c#> is the admissible triple such that for any S.R.P.M.

-1 , >

Similarly, the inverse operation of the carrier system corresponds to the

natural inverse operation on admissible tripless i.e., if< ,c,c> corres-

ponds t4,B, , ,cc'> and <i,,0> corresponds to

<0- l,-BC l,I/ ,l/X ,c',c>, then for any S.R.P.M. Fc

It thus follows as a corollary to Theorem 3 that the set of admissible

triples is a Brandt groupoid under the natural operations of composition and

formation of inverses.

It is natural to ask how the hypothesis of Theorem 2 may be strengthened

so that the set of eligible transformations satisfying it form a group. We

state without proof some results concerning this question.
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Theorem 4. L et <q 1' CP2 ' ) b an 1n lgbh tifQrm h

cr ie ey P.A&Lm of relativ s i pa tielP menhai iOs1 a M o:
±.t paric le mhanics. TIM .heZr I. es . i.: e

L, , a , (n+l)- jiB, . . an qrtgo. e o

n and a ma~xOL ~j ~n~l Mh 4
2
S 1

and fr y y1oa Z1  d Z2 in En , Cy x in R and y in R4,

11(y) - y

T2 (Z,)- <z OBcp(z1,c

13(Zr~Z2) - -d e

The interpretation of S, , X, B and 4 is the same as that stated in

Remark 1. The number p is the ratio c/c" of the absolute values of the old

and new velocities of light. The matrix 0. is a generalized Lorentz matrix

with U-O, which intuitively means that the old and new spatial frames of

reference are at rest with respect to each other. The fact that the hypothesis

of Theorem 4 thus excludes the possibility of transforming from one inertial

frame of reference to another moving with respect to it is sufficient reason

to regard this hypothesis as unnecessarily strong from the point of view of

our intended physical interpretation, On the other hand, it is, of course,

clear that the set of transformations satisfying this hypothesis constitute a

group under the obvious operations.

Stanford University

','ti~Re,~
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FOOTNOTES

I/(page 1) We are grateful to Professor J. C. C. McKinsey for a large number

of helpful suggestions and criticisms. This work was supported in part

by a grant from the Office of Naval Research.

2-(page 6) Paulette Destouches-Fevrier (in £21, pp. 5-6) advocates the use of

a three-valued logic to describe the creation and annihilation of

elementary particles. Actually, the situation is easily handled by the

simple device of introducing the function f-defined on P instead of

a fixed interval T for the whole system. Indeed, to our mind, her drastic

proposal cannot be taken seriously until we know a great deal more

about the mathematics which goes with a multi-valued logic. Even if

such a body of mathematics existed (as it does not -- we do not have

even the general outlines of elementary set theory in three-valued

logic), it would be reasonable to adopt such a proposal only after

every feasible alternative in standard mathematics had been explored.

I/(page 8) The intuitive interpretation of En+1 is as the space-time manifold

of special relativity with the (n+l)st coordinate representing the time

coordinate. Thus, if'CZ,x>is a point of En+l, then under the intended

interpretation, the n-dimensional vector Z gives the spatial coordinates

of the point and x its time coordinate.

4/(page 15) Readers familiar with the standard treatments of relativistic

mechanics will note that (in the interests of rigor and explicitness)

we have replaced "t'" by "h (t)".
p

" (page 18) The statement of Theorem 2 would be made more symmetrical to

Theorem 1 if T2 were replaced by two functions Cp' and 9" such that

c'(Z'X) - [C2 (Zx)]n-l1
and

C- [P 2 (Z]l,)o.,

This procedure was followed in McKinsey and Suppes [81 for classical

mechanics, but in relativistic mechanics, it is natural to introduce

the single transformation )2 for the space-time manifold.

T2

K_&_'j'__ -g.


